Перевод: с русского на все языки

со всех языков на русский

того же порядка

  • 1 того же порядка

    Sokrat personal > того же порядка

  • 2 того же порядка

    Русско-английский большой базовый словарь > того же порядка

  • 3 того же порядка величины

    Универсальный русско-английский словарь > того же порядка величины

  • 4 величина того же порядка

    Универсальный русско-английский словарь > величина того же порядка

  • 5 для того

    1. in order for

    прежде всего; начать с того, что; для началаfor one thing

    кроме того; во-вторыхfor another thing

    с учетом того; чтоallow for the fact

    2. in order that

    с целью чтобы; для того чтобыto the end that

    в предвидении того, что … — foreseeingly that …

    из-за того, чтоby reason of the fact that

    ввиду того что — as; since; seeing that

    за исключением того, чтоexcept that

    3. therefor
    4. in order to; that

    для того; чтобыin order for

    Русско-английский большой базовый словарь > для того

  • 6 для порядка

    ДЛЯ ПОРЯДКА <-у> coll
    [PrepP; these forms only; adv or subj-compl with быть (subj: abstr)]
    =====
    for the observance of form:
    - for appearance' (form's, propriety's) sake;
    - for the sake of appearances <convention, propriety>;
    - [in limited contexts](just) to do things properly < right>.
         ♦ По коридору бегают надзиратели, гремят ключами, заглядывают в глазок. "Не спать, не спать, в карцер захотели?" - это Озерову и Шорохову, больше для порядка (ведь они дремлют сидя, а не лёжа) (Марченко 1). The warders were running along the corridor, rattling their keys and looking into the peepholes: "No more sleep, no more sleep, is it the cooler you want?" This was addressed to Ozerov and Shorokhov, but more for form's sake than anything else; they were dozing sitting up and not lying down (1a).
         ♦ Сам он не выпил во всё это время ни одной капли вина и всего только спросил себе в вокзале чаю, да и то больше для порядка (Достоевский 3). He himself had not drunk a drop of wine the whole time, but had only ordered some tea in the vauxhall, and even that more for propriety's sake (3c).
         ♦ У нас было тоже восемь лошадей (прескверных), но наша конюшня была вроде богоугодного заведения для кляч; мой отец их держал отчасти для порядка и отчасти для того, чтоб два кучера и два форейтора имели какое-нибудь занятие... (Герцен 1). We also had eight horses (very poor ones), but our stable was something like an almshouse for broken-down nags; my father kept them partly for the sake of appearances and partly so that the two coachmen and the two postillions should have something to do... (1a).
         ♦ Для порядка поговорили сначала о культурно-массовой и спортивной работе, а потом перешли к кардинальному вопросу повестки дня... (Аксёнов 1). For the sake of propriety they talked about the mass-culture and sports programs first, and then turned to the cardinal question on the agenda... (1a).

    Большой русско-английский фразеологический словарь > для порядка

  • 7 одного порядка

    adj
    gener. (того же) (ser) afìn (análogo), (того же) (ser) estar cortado por el mismo patrón

    Diccionario universal ruso-español > одного порядка

  • 8 величина

    ж.
    1) (физическое явление, свойство; математическое понятие) quantity ( иногда опускается при переводе)
    2) ( значение) value, magnitude
    3) (амплитуда, размах) magnitude, scope
    4) ( количество) amount, quantity
    5) ( степень) degree, extent
    6) ( размер) size; scale, dimension, measure

    на значительную величину — by a large amount, to a considerable extent

    на порядок величины (больше, меньше)by an order of magnitude (greater, smaller)

    пренебрегать величиной — neglect a quantity, ignore a quantity

    сдвинутый на... величину — displaced by the amount

    - абсолютная величина коэффициента лобового сопротивления
    - абсолютная величина
    - абсолютная звёздная величина
    - абсолютная радиозвёздная величина
    - абстрактная величина
    - аддитивная величина
    - аналоговая величина
    - астрономические величины
    - безразмерная величина
    - бесконечно большая величина
    - бесконечно малая величина второго порядка
    - бесконечно малая величина третьего порядка
    - бесконечно малая величина
    - болометрическая звёздная величина
    - векторная величина
    - величина дислокации
    - величина нагрузки
    - величина наибольшей фазы
    - величина нестабильности фазы
    - величина нулевого порядка
    - величина отклонения
    - величина погрешности
    - величина проскальзывания
    - величина прочности на скалывание
    - величина силы
    - величина тока на входе линейного ускорителя
    - величина фона
    - величина, зависящая от времени
    - величина, зависящая от массы
    - величина, не зависящая от времени
    - взаимно независимые величины
    - взаимосвязанные величины
    - взвешенная величина
    - видимая звёздная величина
    - визуальная звёздная величина
    - внеатмосферная звёздная величина
    - возрастающая величина
    - вспомогательная величина
    - входная величина
    - входящая величина
    - выходная величина
    - гармоническая величина
    - гауссова случайная величина
    - гауссовская случайная величина
    - гетерохромная звёздная величина
    - граничная величина
    - действительная величина
    - действующая величина
    - динамическая величина
    - дискретная величина
    - дискретная случайная величина
    - дозиметрическая величина
    - дополнительная величина
    - допустимая величина поля рассеяния
    - допустимая величина
    - зависимые величины
    - заданная величина
    - звёздная болометрическая величина
    - звёздная величина по радионаблюдениям
    - звёздная величина
    - звёздная визуальная величина
    - измеренная величина
    - измеримая величина
    - измеряемая величина
    - интегральная величина
    - интегральная звёздная величина
    - интенсивная величина
    - инфракрасная звёздная величина
    - иррациональная величина
    - искомая величина
    - истинная величина
    - калибровочно-инвариантная величина
    - канонически сопряжённые величины
    - квантованная величина
    - квантовая величина
    - классическая величина
    - ковариантная величина
    - колебательная величина
    - комплексная величина
    - комплексно-сопряжённая величина
    - конечная величина
    - критическая величина
    - локализованная величина
    - лоренц-инвариантная величина
    - мнимая величина
    - мольная термодинамическая величина
    - монотонная величина
    - монотонно возрастающая величина
    - монотонно убывающая величина
    - монохроматическая звёздная величина
    - наблюдаемая величина
    - направленная величина
    - натуральная величина
    - неархимедова величина
    - независимая величина
    - независимая случайная величина
    - неизвестная величина
    - непериодическая величина
    - непрерывная величина
    - непрерывная случайная величина
    - несоизмеримые величины
    - нефизическая величина
    - неэлектрическая величина
    - номинальная величина
    - нормированная величина
    - обобщённая величина
    - обратная величина относительной дисперсии
    - обратная величина сечения
    - обратная величина числа
    - обратная величина
    - обратно пропорциональные величины
    - ограниченная величина
    - однородные величины
    - опорная величина
    - оптимальная величина
    - основная величина
    - отклоняющаяся величина
    - относительная величина вектора
    - относительная величина
    - отрицательная величина
    - парциальная величина
    - парциальная мольная величина
    - переменная величина
    - перенормированная величина
    - периодическая величина
    - поверхностная величина
    - положительная величина
    - пороговая величина
    - постоянная величина
    - предельная величина
    - предельная звёздная величина
    - пренебрежимо малая величина
    - приближённая величина
    - производная величина
    - прямо пропорциональные величины
    - псевдовекторная величина
    - псевдопериодическая величина
    - псевдоскалярная величина
    - псевдотензорная величина
    - пуассоновская случайная величина
    - радиометрическая звёздная величина
    - размерная величина
    - расчётная величина потока
    - редуцированная фотометрическая величина
    - релятивистски ковариантная величина
    - световые величины
    - седловая величина
    - синусоидальная величина
    - скалярная величина
    - случайная величина
    - соизмеримые величины
    - соответствующая величина
    - сопряжённая величина
    - сосредоточенная величина
    - сохраняющаяся величина
    - спектроскопическая звёздная величина
    - среднеквадратичная величина
    - средняя величина скорости
    - средняя величина энергии
    - средняя величина
    - статистическая величина
    - стохастическая величина
    - суммарная величина
    - тензорная величина
    - термодинамические величины
    - убывающая величина
    - угловая величина
    - удельная величина
    - удельная термодинамическая величина
    - ультрафиолетовая звёздная величина
    - усреднённая величина
    - усреднённая по времени величина
    - физические величины
    - фотовизуальная звёздная величина
    - фотографическая звёздная величина
    - фотокрасная звёздная величина
    - фотометрические величины
    - фотонная величина
    - фотоэлектрическая звёздная величина
    - характеристическая величина
    - характерная величина
    - целая величина
    - цифровая величина
    - численная величина
    - эквивалентная величина
    - экспоненциальная величина
    - экстенсивная величина
    - энергетическая величина
    - эталонная величина
    - эффективная величина

    Русско-английский физический словарь > величина

  • 9 порядок

    м.
    order; ( уравнения) order, degree; ( последовательность действий) sequence, procedure
    - алфавитный порядок
    - антиферромагнитный порядок
    - атомный порядок
    - ближний атомный порядок
    - ближний координационный порядок
    - ближний магнитный порядок
    - ближний порядок
    - ближний трансляционный порядок
    - вакансионный порядок
    - второй порядок
    - высший порядок
    - дальний координационный порядок
    - дальний магнитный порядок
    - дальний порядок
    - дальний трансляционный порядок
    - двумерный трансляционный порядок
    - дробный порядок полосы
    - магнитный порядок
    - нематический порядок
    - нескомпенсированный антиферромагнитный порядок
    - нулевой порядок
    - обратный порядок
    - одномерный трансляционный порядок
    - ориентационный порядок
    - первый порядок
    - половинный порядок полосы
    - порядок величины
    - порядок выполнения
    - порядок группы
    - порядок дифракции
    - порядок дифференциального уравнения
    - порядок дифференцирования
    - порядок запрета
    - порядок интегрирования
    - порядок интерференции
    - порядок колебаний
    - порядок кривой
    - порядок мультипольности
    - порядок остановки
    - порядок отражения
    - порядок парастатистики
    - порядок полинома
    - порядок полос на контуре
    - порядок полосы
    - порядок приближения
    - порядок проведения эксперимента
    - порядок производной
    - порядок пуска
    - порядок реакции
    - порядок резонанса
    - порядок симметрии
    - порядок следования
    - порядок спектра
    - порядок укладки слоёв
    - порядок упаковки
    - порядок уравнения
    - порядок химической реакции
    - порядок чередования фаз
    - скомпенсированный антиферромагнитный порядок
    - топологический дальний порядок
    - топологический порядок
    - трансляционный порядок
    - ферромагнитный порядок
    - хронологический порядок
    - целый порядок полосы
    - шахматный порядок

    Русско-английский физический словарь > порядок

  • 10 включение синхронной машины без контроля синхронизма

    1. turn-on of synchronous machine

     

    включение синхронной машины без контроля
    Включение синхронной машины на параллельную работу путем доведения ее напряжение до значения того же порядка, синхронизма что и напряжение другой машины или питающей сети с последующим включением на параллельную работу без точного согласования частоты и фазы.
    [ ГОСТ 27471-87]

    включение синхронной машины без контроля синхронизма
    Включение синхронной машины на параллельную работу путем доведения ее напряжения до значения того же порядка, что и напряжение другой машины или питающей сети с последующим включением на параллельную работу без точного согласования частоты и фазы
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > включение синхронной машины без контроля синхронизма

  • 11 экситон

     Экситон
      Водородоподобная квазичастица, представляющая собой электронное возбуждение в диэлектрике или полупроводнике, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы. Хотя экситон состоит из электрона и дырки, его следует считать самостоятельной элементарной (не сводимой) частицей в случаях, когда энергия взаимодействия электрона и дырки того же порядка, что и энергия их движения, а энергия взаимодействия между двумя экситонами мала по сравнению с энергией каждого из них.

    Russian-English dictionary of Nanotechnology > экситон

  • 12 exiton

     Экситон
      Водородоподобная квазичастица, представляющая собой электронное возбуждение в диэлектрике или полупроводнике, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы. Хотя экситон состоит из электрона и дырки, его следует считать самостоятельной элементарной (не сводимой) частицей в случаях, когда энергия взаимодействия электрона и дырки того же порядка, что и энергия их движения, а энергия взаимодействия между двумя экситонами мала по сравнению с энергией каждого из них.

    Russian-English dictionary of Nanotechnology > exiton

  • 13 фибриллированная пленочная нить

    1. fibrillated tape yarn

     

    фибриллированная пленочная нить
    Пленочная текстильная нить с продольными расслоениями, имеющая поперечные связи между фибриллами.
    Примечание
    Фибриллы в данном случае являются элементами структуры, тонина которой того же порядка, что у текстильных волокон.
    [ ГОСТ 13784-94]

    Тематики

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > фибриллированная пленочная нить

  • 14 П-394

    ДЛЯ ПОРЯДКА (-y) coll PrepP these forms only adv or subj-compl with быть» ( subj: abstr)) for the observance of form
    for appearance' (formes, propriety') sake
    for the sake of appearances (convention, propriety) as a formality (in limited contexts) (just) to do things properly (right).
    По коридору бегают надзиратели, гремят ключами, заглядывают в глазок. «Не спать, не спать, в карцер захотели?» -это Озерову и Шорохову, больше для порядка (ведь они дремлют сидя, а не лёжа) (Марченко 1). The warders were running along the corridor, rattling their keys and looking into the peepholes: uNo more sleep, no more sleep, is it the cooler you want?" This was addressed to Ozerov and Shorokhov, but more for form's sake than anything else, they were dozing sitting up and not lying down (1a).
    Сам он не выпил во всё это время ни одной капли вина и всего только спросил себе в вокзале чаю, да и то больше для порядка (Достоевский 3). Не himself had not drunk a drop of wine the whole time, but had only ordered some tea in the vauxhall, and even that more for propriety's sake (3c).
    У нас было тоже восемь лошадей (прескверных), но наша конюшня была вроде богоугодного заведения для кляч мой отец их держал отчасти для порядка и отчасти для того, чтоб два кучера и два форейтора имели какое-нибудь занятие... (Герцен 1). We also had eight horses (very poor ones), but our stable was something like an almshouse for broken-down nags, my father kept them partly for the sake of appearances and partly so that the two coachmen and the two postillions should have something to do... (1a).
    Для порядка поговорили сначала о культурно-массовой и спортивной работе, а потом перешли к кардинальному вопросу повестки дня... (Аксёнов 1). For the sake of propriety they talked about the mass-culture and sports programs first, and then turned to the cardinal question on the agenda... (1a).

    Большой русско-английский фразеологический словарь > П-394

  • 15 для порядку

    ДЛЯ ПОРЯДКА <-у> coll
    [PrepP; these forms only; adv or subj-compl with быть (subj: abstr)]
    =====
    for the observance of form:
    - for appearance' (form's, propriety's) sake;
    - for the sake of appearances <convention, propriety>;
    - [in limited contexts](just) to do things properly < right>.
         ♦ По коридору бегают надзиратели, гремят ключами, заглядывают в глазок. "Не спать, не спать, в карцер захотели?" - это Озерову и Шорохову, больше для порядка (ведь они дремлют сидя, а не лёжа) (Марченко 1). The warders were running along the corridor, rattling their keys and looking into the peepholes: "No more sleep, no more sleep, is it the cooler you want?" This was addressed to Ozerov and Shorokhov, but more for form's sake than anything else; they were dozing sitting up and not lying down (1a).
         ♦ Сам он не выпил во всё это время ни одной капли вина и всего только спросил себе в вокзале чаю, да и то больше для порядка (Достоевский 3). He himself had not drunk a drop of wine the whole time, but had only ordered some tea in the vauxhall, and even that more for propriety's sake (3c).
         ♦ У нас было тоже восемь лошадей (прескверных), но наша конюшня была вроде богоугодного заведения для кляч; мой отец их держал отчасти для порядка и отчасти для того, чтоб два кучера и два форейтора имели какое-нибудь занятие... (Герцен 1). We also had eight horses (very poor ones), but our stable was something like an almshouse for broken-down nags; my father kept them partly for the sake of appearances and partly so that the two coachmen and the two postillions should have something to do... (1a).
         ♦ Для порядка поговорили сначала о культурно-массовой и спортивной работе, а потом перешли к кардинальному вопросу повестки дня... (Аксёнов 1). For the sake of propriety they talked about the mass-culture and sports programs first, and then turned to the cardinal question on the agenda... (1a).

    Большой русско-английский фразеологический словарь > для порядку

  • 16 дифференциальные уравнения

    1. differential equations

     

    дифференциальные уравнения

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    дифференциальные уравнения
    Уравнения, предназначенные для выражения соотношений не только между отдельно взятыми величинами, но и между их изменениями. Это уравнения, в той или иной форме связывающие независимые переменные (см. Аргумент функции), искомые функции и их производные. Решение (интегрирование) Д.у. заключается в отыскании функции, которая удовлетворяет этому уравнению для всех значений независимой переменной (или переменных) в определенном конечном или бесконечном интервале. Такое решение может быть проверено подстановкой. Если неизвестная функция зависит от одной независимой переменной, то Д.у. называется обыкновенным; если рассматривается функция многих переменных и в уравнении содержатся частные производные — уравнением в частных производных (с частными производными). Порядком Д.у. называется высший из порядков производных или дифференциалов, входящих в уравнение. Общий вид обыкновенного Д.у. n-го порядка: F(x, y, y?, …, y(n)) = 0. Общий вид решения обыкновенного Д.у. n-го порядка можно записать так: y = f (x, c1, c2, …, cn). Здесь c1, c2 и т.д. — произвольные постоянные (постоянные интегрирования), каждый частный набор которых дает частное решение. Таким образом, Д.у. сами по себе, без наложенных дополнительных ограничений, описывают целые классы функций. Если речь идет об обыкновенном уравнении n-го порядка (т.е. об уравнении, содержащем производную n-го порядка), то решение содержит ровно n произвольных постоянных. Для того чтобы выделить из этого класса единственное решение, обычно необходимо задать n дополнительных ограничений на функцию. Например, Д.у. позволяют определять поведение решения всюду, где оно существует, если заданы начальные условия, т.е. значения функции и ее производных в начальной точке. В огромном числе случаев законы природы и общества, управляющие теми или иными процессами, могут быть выражены в форме Д.у., а расчет течения этих процессов сводится к решению таких уравнений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > дифференциальные уравнения

  • 17 импульсное перенапряжение

    1. surge voltage
    2. surge overvoltage
    3. surge
    4. spike
    5. pulse surge
    6. power surge
    7. peak overvoltage
    8. high-voltage surge
    9. electrical surge
    10. damaging transient
    11. damaging surge

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

    3.1.24 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.35 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > импульсное перенапряжение

  • 18 колокейшн

    1. colocation
    2. collocation
    3. co-location

     

    колокейшн
    размещение сервера
    Услуга по размещению вашего серверного оборудования на телекоммуникационном узле, имеющем высокоскростное подключение к сети Интернет, обеспечению технических условий функционирования оборудования, таких как стабильное электропитание, оптимальная температура и влажность, круглосуточный мониторинг состояния.
    [ http://your-hosting.ru/terms/c/colloc/]

    размещение физических серверов
    со-размещение

    Размещение оборудования Заказчика на площадях Провайдера, а также предоставление последним сервисных услуг по инсталляции, настройке, управлению и обеспечению безопасности установленного оборудования на базе фиксированной арендной платы.
    [ http://www.outsourcing.ru/content/glossary/A/page-1.asp]

    совместное размещение
    Размещение оборудования электросвязи принадлежащего разным компаниям-операторам в одном помещении или здании (МСЭ-Т K.58).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Что такое "колокейшн"? И чем отличаются друг от друга colocation, co-location и collocation?

    Вообще, все эти слова означают одно — размещение сервера клиента на технической площадке провайдера. Техническая площадка — это специализированное помещение с гарантированным электропитанием, поддержанием достаточно низкого уровня температуры, с охраной, системой пожаротушения и так далее. По сути, это узел связи. Разница в написании слова «colocation» возникла очень давно, причем по вполне естественным причинам. В оригинале, по-английски, верны все три написания этого слова. Поэтому все пишут его так, как привыкли. Вот и все.

    Чем же отличается колокейшн от хостинга?


    Colocation — это размещение своего оборудования (сервера) на технической площадке провайдера. Это действительно похоже на хостинг, когда вы размещаете свой веб-ресурс у провайдера. Однако виртуальный хостинг — это когда на провайдерской машине находятся сотни сайтов его клиентов, а colocation — когда клиент устанавливает своей сервер у провайдера и использует все его ресурсы только для размещения своего собственного сайта.

    Как правило, для colocation применяются специализированные серверы, которые собираются в промышленных корпусах шириной 19 дюймов, предназначенных для монтажа в специальную стойку. Еще одна характеристика габаритов корпуса — высота. Она измеряется в юнитах (unit). Это порядка 45 миллиметров. Сервера бывают размером в 1 юнит (1U), 2 юнита (2U), 4 юнита (4U) и так далее. Как правило, сейчас клиенты размещают серверы в 1U-корпусах, так как с пользователей взимается плата за размер сервера пропорционально количеству юнитов. Например, 1U стоит одно количество денег, а 2U — в два раза большее. На деле, в 1U корпусе можно собрать как очень мощный двухпроцессорный сервер с двумя-тремя дисками, так и "слабенький" недорогой сервер, которого, тем не менее, хватит для размещения большинства проектов.

    Серверы для colocation отличаются от обычных компьютеров, кроме необычного корпуса, материнской платой. Существуют специальные серверные материнские платы, которые содержат прямо на себе весь необходимый набор комплектующих — сетевые карты, видеокарты, контроллеры жестких дисков SCSI/ATA/SATA и так далее. Кроме того, к производству таких материнских плат предъявляются повышенные требования по качеству.

    Вообще, сервер можно как собрать "руками" самостоятельно, так и купить готовый. Однако нужно помнить о том, что сервер отличается от обычного компьютера тем, что он постоянно работает, причем с серьезной нагрузкой. Работает без перерывов годами. Соответственно, нужно думать о необходимом количестве специальных вентиляторов, продумать прохождение воздушных потоков внутри сервера и так далее. Все эти моменты уже учтены в готовых серверах. Это очень важно.

    Как правило, для colocation применяются специализированные серверы, которые собираются в специальных промышленных корпусах шириной 19 дюймов, и предназначены такие корпуса для монтажа в специальную стойку

    В какой ситуации для клиента имеет смысл переходить на колокейшн?


    Основных причин для перехода с виртуального хостинга на colocation две:

    1. Ваш веб-проект настолько вырос, что потребляет столько ресурсов, сколько ему не могут предоставить на хостинговой машине провайдера. Мы помним, что на каждой хостинговой машине, кроме вас, "живет" еще несколько сотен серверов. Если проект большой, посещаемый, требует много вычислительных ресурсов, рано или поздно он начинает "тормозить" на "общем" хостинге. Да, возможно, что хостинг-провайдер просто поместил на физический сервер слишком много виртуальных веб-серверов, но зачастую это все же не так. Как только сервер начинает "тормозить" на хостинге, нужно заняться оптимизацией скриптов и запросов к базе данных. Если это не помогает, то нужно задумываться о colocation, изучать эту возможность, не пора ли действительно брать отдельный сервер.

    2. Проекту нужно много дискового пространства. Сейчас на хостинге предлагают 500 мегабайт места или даже 1 Гб. Есть провайдеры, которые предлагают и больше. Однако разместить хотя бы 5 Гб на виртуальном хостинге уже просто нереально. Кстати, как правило, проекты, которым нужно много места, сталкиваются и с проблемами производительности, ведь эти данные не просто лежат на диске — с ними работают посетители. Много данных, надо полагать, предполагает наличие большого количества посещений. Ведь эти данные размещаются, чтобы люди их смотрели, а не просто так. На colocation же в вашем распоряжении окажется весь жесткий диск сервера или даже несколько дисков — сколько пожелаете и купите. Диски емкостью 100-150 Гб, выполненные по технологии SATA, стоят чуть более ста долларов. Более быстрые SCSI-диски подороже. Все это делает colocation очевидной возможностью для развития проектов, которые требуют много места. В конце концов, аренда многих гигабайт места на сервере у хостинг-провайдера по затратам делает услугу виртуального хостинга очень похожей на colocation или хотя бы сравнимой.

    Насколько колокейшн дороже обычного хостинга?


    Как правило, за пользование виртуальным хостингом взимается некая фиксированная плата, которая составляет несколько долларов в месяц. Кроме того, пользователь может приобрести дополнительные услуги. Например, больше дискового пространства, больше почтовых ящиков и так далее. Структура платежей в пользу хостинг-провайдера проста и понятна.

    В случае с colocation все несколько сложнее. Пользователи colocation, во-первых, должны приобрести сервер. Как уже говорилось, цены на серверы начинаются от $800-1000. То есть цена "входного билета" значительно выше, чем в случае с виртуальным хостингом. Однако есть варианты — можно не покупать сервер, а недорого взять его в аренду у провайдера — об этом ниже.

    Также пользователи colocation платят за размещение сервера. Как правило, цена этой услуги должна составлять порядка $50 — такова рыночная цена на сегодняшний день, середину лета 2004 года. Стоимость размещения сервера плавно снижалась с годами. Так, пять лет назад размещение colocation сервера стоило не менее $200-300 в месяц. Тогда такая цена обуславливалась крайне скудным предложением и эксклюзивностью услуг, так как клиентов были единицы. Сейчас цены находятся на уровне себестоимости, и снижение цены до $20, скажем, маловероятно. Впрочем, возможны варианты, и время все расставит по местам.

    Пользователь colocation платит за трафик, который генерируется его сервером
    Также пользователь colocation платит за трафик, который генерируется его сервером. В данный момент ситуация на рынке такова, что многие провайдеры предлагают неограниченный трафик за фиксированную сумму, которая, как правило, включена в стоимость размещения оборудования, о которой писалось выше. Однако есть один момент — провайдерам выгодно, чтобы трафик, генерируемый клиентом, был российским. То есть предназначался для пользователей, которые находятся в России. Провайдеры просят, чтобы трафик, создаваемый сервером, был как минимум наполовину российским. Таково предложение компании.masterhost, например. На практике практически все пользователи легко укладываются в такое ограничение, и проблем тут нет.

    Если сравнивать стоимость размещения сайта на виртуальном хостинге и на colocation в цифрах, то хостинг для серьезного сайта в виртуальной среде стоит от $20 в месяц, а размещение собственного сервера — от $50 в месяц. Вполне сравнимые цифры, тем более что во втором случае ваш веб-сервер получает в десятки раз больше ресурсов. То есть colocation — это естественный путь развития для серьезных проектов.

    Какие особые возможности колокейшн предоставляет по сравнению с хостингом?

    Две главные возможности colocation — это несравнимо большее количество ресурсов (диска, памяти, процессорного времени) и гибкость настройки и конфигурации. На виртуальном хостинге ваш сайт находится на одной машине с еще несколькими сотнями похожих сайтов. Конечно, ресурсов вы получаете немного, но вполне достаточно для работы даже довольно серьезного ресурса. Однако, как только на сервер возникает повышенная нагрузка — например в часы пик или при резком увеличении количества посетителей по какой-то причине, — у пользователя возникают риски. Например, риск нехватки каких-то ресурсов. Риски, в общем, небольшие, но если ваш сайт — это, например, интернет-магазин, то каждая ошибка на сайте — это несделанный посетителем заказ. Стоит подумать, нужно ли рисковать в том случае, если за сравнимые деньги можно получить в пользование целый отдельный сервер.

    Гибкость. Очень часто программистам, которые работают над сайтом, нужно поставить какие-нибудь дополнительные модули или использовать нестандартное программное обеспечение. Не всегда есть возможность установить на сервер нужное ПО и настроить его так, как нужно. В случае же с colocation этой проблемы не существует в принципе, так как администратор сервера может устанавливать что угодно и настраивать ПО любым образом.

    Можно сказать, что виртуальный хостинг — это "детство" серьезных проектов, а colocation — их "зрелость". Переход на colocation — это естественный путь развития любого большого проекта, и таким веб-ресурсам однозначно нечего делать на виртуальном хостинге.

    Бывает ли колокейшн на собственных компьютерах клиентов, и есть ли в этом смысл? Как в этом случае эти компьютеры обслуживаются?

    Как правило, colocation — это именно установка собственного компьютера-сервера пользователя на площадку хостинг-провайдера. В этом случае клиент сам занимается администрированием сервера, его настройкой, а также принимает на себя риски, связанные с поломкой комплектующих. Это классический вариант. Однако в последнее время активно развивается направление аренды сервера у провайдера. Клиенту не нужно платить тысячу-полторы-две долларов за сервер. Можно его за небольшую плату арендовать у провайдера. Это интересный вариант для только запускающихся проектов, когда денег на покупку сервера еще нет. Впоследствии, как правило, можно выкупить сервер у провайдера или приобрести свой сервер независимо. Да, при аренде риски, связанные с поломкой сервера, берет на себя провайдер. То есть если провайдер сдает вам в аренду сервер, он отвечает за его работоспособность и за оперативную замену вышедших из строя комплектующих, если, не дай Бог, такое случится. Это интересный вариант, так как ехать в три ночи на другой конец города, чтобы поменять "полетевшую" память — не очень интересное занятие. А если пользователь живет в другом городе...

    Насколько часто сейчас используется колокейшн?

    Услуга многие годы развивалась. Пять лет назад клиентов colocation у провайдеров были единицы. Года три назад — десятки. Сейчас у серьезных провайдеров, занимающихся размещением серверов как отдельным бизнесом, уже сотни клиентов. Colocation используют интернет-магазины, сетевые СМИ, игровые порталы, баннерные сети, различные контент-проекты. Также многие компании выносят на colocation из своих офисов почтовые сервера и другие службы. Есть много вариантов использования colocation, и их становится все больше. Наблюдается четкая тенденция к "переезду" на colocation "выросших" из виртуального хостинга проектов, так как провайдеры предлагают не просто взять и поставить машину, а предоставляют полный комплекс услуг с администрированием клиентского сервера.

    Какие сложности возникают перед клиентом при использовании колокейшн?

    Главная проблема — необходимость наличия системного администратора, который установит и настроит операционную и хостинговую среду, а также будет потом заниматься поддержкой и администрированием системы. С одной стороны — да, это проблема. Но с другой — найти администратора несложно, и стоит это недорого. Нет необходимости, например, брать на работу "выделенного" человека. Вполне можно пользоваться и разовыми услугами по необходимости.

    Однако хостинг-провайдеры предлагают и свои собственные услуги по администрированию. Те же специалисты, которые занимаются администрированием хостинговых серверов провайдера, вполне могут заниматься и сервером клиента. Стоить это будет значительно дешевле, чем привлечение клиентом стороннего специалиста.

    Также есть проблема с "железом", которое потенциально может ломаться. Нужно брать сервер с серьезной гарантией или не покупать его, а брать в аренду у провайдера.

    Какие существуют виды оплаты при колокейшн?


    .masterhost предлагает клиентам colocation платить им за генерируемый исходящий трафик
    Те же самые, как и в случае с оплатой хостинга. По сути, система приема платежей одна и та же — как для клиентов хостинга, так и для colocation. Кстати, тут есть одна интересная возможность. Наша компания, например, предлагает клиентам colocation платить им за генерируемый исходящий трафик. То есть если у проекта много исходящего трафика, мы вполне готовы даже заплатить за него клиенту. Возможно, что и не очень много, однако это вполне позволяет снизить плату за colocation или же вообще избавиться от нее. Проекты с довольно большим трафиком могут даже заработать.

    В заключение хочу добавить несколько слов о неочевидных выгодах использования именно colocation, а не виртуального хостинга. Переходя на использование выделенного сервера для хостинга своих ресурсов, владелец сайта автоматически увеличивает посещаемость своего ресурса — просто потому что его сервер может просто физически принять и обслужить больше посетителей. Больше посетителей — это возможность показать больше рекламы, к примеру.

    Используя colocation, можно значительно наращивать ресурсы сервера. Например, если понадобилось дополнительное дисковое пространство, покупаете за $100 диск на 120 Гб, и проблема решена. Стало больше посетителей, и сервер не справляется с работой скриптов — меняем процессор на более мощный, и проблем тоже нет.

    [ http://hostinfo.ru/articles/358]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > колокейшн

  • 19 зарядное устройство (в электротехнике)

    1. charger

     

    устройство зарядное (в электротехнике)
    Устройство для зарядки электрических аккумуляторов и батарей конденсаторов.
    [РД 01.120.00-КТН-228-06]


    Зарядные устройства аккумуляторов

    Емкость и время работы аккумуляторных батарей очень сильно зависят от типа и качества зарядных устройств, применяемых для их заряда, которые обеспечивают определенный метод заряда и выбор режима разряда. Выбор хорошего зарядного устройства для пользователя аккумуляторов часто является вопросом второстепенной важности, особенно при использовании аккумуляторов в бытовой электронной технике. Однако это очень существенный вопрос, и решать его нужно сразу, чтобы впоследствии не удивляться, почему так быстро приходится менять аккумуляторы или почему они не держат заряд. В большинстве случаев деньги, вложенные в покупку хорошего зарядного устройства, оправдывают себя в результате эффективной работы и длительного срока службы аккумуляторов.

    Построение схемы простейшего зарядного устройства зависит от принципов заряда, которых, в общем, два: ограничение тока заряда и ограничение напряжения заряда. Принцип заряда с ограничением тока заряда используется при заряде никель-кадмиевых и никель-металлгидридных аккумуляторов, а принцип с ограничением напряжения заряда - при заряде свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторов.

    Весьма быстрое развитие электроники, совершенствование её элементной базы привели к созданию специализированных микросхем зарядных устройств, способные автоматически обеспечить заряд аккумулятора по заданному алгоритму и предназначенные для заряда аккумуляторов любого типа. Кроме того, отдельные типы микросхем помимо заряда обеспечивают измерение емкости аккумулятора или аккумуляторной батареи и степени разряда.

    Современные микросхемы зарядных устройств способны очень четкое прекращать процесса заряда практически по всем возможным характеристикам заряда: по скорости повышения температуры ΔТ/Δt, по пиковому напряжению на аккумуляторной батарее, по кратковременному понижению напряжения ΔU/Δt, по максимальной температуре, по сигналу таймера. Отдельные микросхемы обеспечивают контроль температуры окружающей среды и в зависимости от этого корректируют режим заряда и разряда. Например, такая коррекция происходит пошагово при изменении температуры на каждые 10 °С в пределах от -35 до +85 °С. На практике любая из этих схем, взятая за основу, обрастает дополнительными элементами, добавляющими зарядному устройству новые возможности, улучшая его характеристики.

    Зарядные устройства аккумуляторов, обеспечивающие постоянный ток ( гальваностатический режим заряда)
    Большая часть зарядных устройств обеспечивает заряд только постоянным током и потому пригодны лишь для заряда щелочных герметичных аккумуляторов (никель-металлгидридных и никель-кадмиевых). Простейшие бытовые зарядные устройства, осуществляющие заряд постоянным током, применяются для заряда от 1 до 4 аккумуляторов. Они различаются в основном конструкцией, а не принципиальной электрической схемой. Чаще всего такие зарядные устройства питаются через трансформатор от сети 220В и обеспечивают выпрямленный ток с невысоким уровнем его стабилизации. Ток практически всегда не регулируется, а время заряда определяется самим пользователем.

    Универсальность бытовых зарядных устройств, как правило, означает возможность установки в них аккумуляторов разных габаритов и обеспечение постоянного тока порядка 0,1С, по отношению к емкости, которую производитель зарядного устройства считает типичной для аккумуляторов такого типоразмера. Поэтому следует быть внимательным при установке в них аккумуляторов и правильно определять время заряда. За последние 5-7 лет быстрый прогресс промышленности привел к выпуску щелочных аккумуляторов одинаковых габаритов, но отличающихся по емкости в 3 раза. Стремление использовать простые универсальные зарядные устройства для заряда аккумуляторов все большей емкости может привести к очень продолжительному и, главное, малоэффективному заряду токами существенно меньше стандартного значения. Главным достоинством таких зарядных устройств является их низкая цена.

    Более дорогие зарядные устройства обеспечивают несколько режимов: доразряд (если он необходим), заряд и режим подзаряда. Доразряд щелочных аккумуляторов (до 1 В/ак) производится с целью снятия остаточной емкости. Однако следует учитывать, что в таких зарядных устройствах аккумуляторы, устанавливаемые в пружинные контакты, могут быть соединены последовательно, а контроль разряда выполняется по предельному разрядному напряжению U=(n х 1,0)В, где n - количество аккумуляторов в цепочке. Но после длительной эксплуатации аккумуляторы могут очень сильно различаться по емкости, и контроль по среднему напряжению для всей цепочки может привести к переразряду или переполюсованию наиболее слабых и их порче.

    Прекращение заряда или переключение в режим подзаряда (малым током для компенсации саморазряда) производится в таких зарядных устройствах автоматически в соответствии с некоторыми из тех параметров контроля, которые описаны в другой статье. При использовании таких зарядных устройств следует помнить, что не рекомендуется часто и надолго оставлять аккумуляторы в режиме компенсационного подзаряда, так как это укорачивает срок их службы.

    Некоторые зарядные устройства конструктивно оформлены так, что обеспечивают заряд как 1-4 отдельных аккумуляторов, так и 9 В батареи типоразмера 6E22 (E-BLOCK). Некоторые зарядные устройства имеют индивидуальный контроль процесса заряда (детекция -ΔU) в каждом канале, что дает возможность заряжать одновременно аккумуляторы разных типоразмеров.

    Следует заметить, что в том случае, когда пользователь может позволить себе длительный заряд никель-кадмиевых или никель-металлгидридных аккумуляторов стандартным током 0,1 С в течение 16 ч, можно использовать простейшие зарядные устройства с контролем процесса по времени. При этом, если нет уверенности в полном исчерпании емкости, следует очередной заряд сократить по времени: лучше некоторый недозаряд аккумуляторов, чем значительный перезаряд, который может привести к их деградации и преждевременном выходе из строя. Но вообще большая часть современных цилиндрических аккумуляторов может перенести случайный довольно значительный перезаряд без повреждения и последствий, хотя емкость их при последующем разряде и не повысится.

    Если же нужно максимально сократить время переподготовки аккумуляторов после исчерпания емкости, следует использовать зарядные устройства для быстрого заряда, но с высоким уровнем контроля процесса. При выборе зарядного устройства с разными параметрами контроля процесса следует учитывать, что контроль его по абсолютной величине конечного напряжения ненадежен, а из двух наиболее часто рекомендуемых производителями аккумуляторов параметров (-ΔU и ΔT/Δt) первый реализован уже во многих современных зарядных устройствах, второй - для обычных зарядных устройств редок, прежде всего из-за того, что требует наличия термодатчика, а его устанавливают только в батареях, но возможна установка термодатчика в место контакта аккумулятора с зарядным устройством. Не следует увлекаться и чересчур быстрым зарядом аккумуляторов (некоторые компании предлагают заряд за 15-30 мин). При плохом аппаратурном обеспечении даже надежного способа контроля заряда, столь быстрый заряд значительно сократит срок службы аккумулятора.

    Зарядные устройства аккумуляторов, обеспечивающие режим постоянного напряжения ( потенциостатический режим заряда) и комбинированный заряд
    Зарядные устройства для свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторных батарей должны осуществлять стабилизацию тока на первой стадии заряда и стабилизацию напряжения питания на второй. Кроме того, должен быть обеспечен контроль конца заряда, который в общем случае может выполняться либо по времени, либо по снижению тока до заданной минимальной величины.

    Зарядных устройств с такой стратегией заряда на рынке много меньше, чем зарядных устройств, реализующих режим постоянного тока (имеются ввиду зарядные устройства для непосредственного заряда аккумуляторов и батарей, а не блоки питания для сотовых телефонов, ноутбуков и т.п.).

    О зарядных устройствах никель-кадмиевых и никель-металлгидридных аккумуляторах
    Для никель-кадмиевых и никель-металлгидридных аккумуляторных батарей существует три типа зарядных устройств. К ним относятся:

    1. Зарядные устройства нормального (медленного) заряда
    2. Зарядные устройства быстрого заряда
    3. Зарядные устройства скоростного заряда

    1. Зарядные устройства нормального (медленного) заряда.

    Зарядные устройства этого типа, иногда называют ночными. Ток нормального заряда составляет 0,1С. Время заряда - 14...16 ч. При таком малом токе заряда трудно определить время окончания заряда. Поэтому обычно индикатор готовности батареи в зарядных устройствах для нормального заряда отсутствует. Они самые дешевые и предназначены только для зарядки никель-кадмиевых аккумуляторов. Для зарядки как никель-кадмиевых так и никель-металлгидридных аккумуляторов используются другие, более совершенные зарядные устройства. Если зарядный ток установлен правильно, полностью заряженная батарея становится чуть теплой на ощупь. В таком случае нет надобности немедленно отключать ее от зарядного устройства. В нем она может оставаться более чем на один день. Но все же ее отсоединение сразу после окончания заряда - лучший вариант. При применении таких зарядных устройствах проблемы возникают, если они используются для зарядки батарей малой емкости, в то время как рассчитаны для работы с более мощными батареями. В таком случае аккумуляторная батарея станет нагреваться уже по достижении 70% своей емкости. Поскольку возможность понизить ток заряда или прекратить его процесс вообще отсутствует, то во второй половине цикла заряда начнется процесс теплового разрушения аккумуляторов. Единственно возможный способ сохранить аккумуляторы, это отключить их, как только они станут горячими. В случае, если для зарядки мощной аккумуляторной батареи используется недостаточно мощное зарядное устройство, батарея в процессе заряда будет оставаться холодной и никогда не будет заряжена до конца. Тогда она потеряет часть своей емкости.

    2. Зарядные устройства быстрого заряда.
    Они позиционируются как зарядные устройства среднего класса как по скорости заряда, так и по цене. Заряд аккумуляторов в них происходит в течение 3...6 часов током около 0,ЗС. В качестве необходимого элемента эти зарядные устройства имеют схему контроля достижения аккумуляторами определенного напряжения в конце заряда и их отключения в этот момент. Такие зарядные устройства обеспечивают лучшее по сравнению с устройствами медленного заряда обслуживание аккумуляторов. В настоящее время они уступили свое место зарядным устройствам скоростного заряда.

    3. Зарядные устройства скоростного заряда.
    Такие зарядные устройства имеют несколько преимуществ перед зарядными устройствами других типов. Главное из них - меньшее время заряда. Хотя из-за большей мощности источника напряжения и необходимости использования специальных узлов контроля и управления такие зарядные устройства имеют наиболее высокие цены. Время заряда в зарядных устройствах такого типа зависит от тока заряда, степени разряда аккумуляторов, их емкости и типа. При токе заряда 1С разряженная никель-кадмиевая батарея заряжается в среднем менее чем за один час. Если же аккумуляторная батарея полностью заряжена, некоторые зарядные устройства переходят в режим подзарядки пониженным током заряда и с отключением по сигналу таймера.

    Современные устройства скоростного заряда обычно используются для зарядки как никель-кадмиевых, так и никель-металлгидридных аккумуляторных батарей. Поскольку этот процесс происходит при повышенном токе заряда и за ним необходим контроль, крайне важно, чтобы в конкретном зарядном устройстве заряжались только те аккумуляторы, которые рекомендованы для скоростного заряда производителем. Некоторые батареи маркируют электрически на заводах-изготовителях с той целью, чтобы зарядное устройство могло распознать их тип и основные электрические характеристики. После этого зарядное устройство автоматически установит величину тока и задаст алгоритм процесса заряда, соответствующие установленным в него аккумуляторам.

    Еще раз подчеркнем, что свинцово-кислотные и литий-ионные аккумуляторные батареи имеют алгоритмы заряда, не совместимые с алгоритмом заряда никель-кадмиевых и никель-металлгидридных аккумуляторов.

    [ http://www.powerinfo.ru/charge.php]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > зарядное устройство (в электротехнике)

  • 20 ксенийность

    [греч. xenia — гостеприимство, от xenos — гость, чужой, посторонний]
    отличие отдельных семян или плодов от других семян или плодов того же растения окраской, формой, величиной или иными признаками. К. — непосредственное проявление признаков отцовского организма на эндосперме семени (ксении 1-го порядка) или околоплоднике (ксении 2-го порядка) материнских растений.

    Толковый биотехнологический словарь. Русско-английский. > ксенийность

См. также в других словарях:

  • того же порядка — прил., кол во синонимов: 8 • в таком же роде (11) • в том же роде (13) • подобного же рода …   Словарь синонимов

  • Одного (того же) порядка — ПОРЯДОК, дка, м. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • того же рода — того же порядка, в таком же роде, такой же, такого же рода, такого же типа, такого же склада, подобного же рода, в том же роде, такого же порядка, аналогичный, подобного рода Словарь русских синонимов. того же рода прил., кол во синонимов: 11 •… …   Словарь синонимов

  • Того. Исторический очерк — Того в доколониальный период. Населявшие в древности отдельные области территории Т. племена достигли значительного уровня материальной культуры. Они умели изготовлять простейшие каменные орудия, предметы из глины, освоили обработку железа.… …   Энциклопедический справочник «Африка»

  • ПОРЯДКА СООТНОШЕНИЕ — сравнение функций, О о с оотношения, асимптотические соотношения, понятие, возникающее при изучении поведения одной функции относительно другой в окрестности неж рой точки (быть может, бесконечной). Пусть x0 предельная точка множества Е. Если для …   Математическая энциклопедия

  • ТОГО СИГЕНОРИ — (р. 1882) японский дипломат. С 1912 Т. служил в японских консульствах в Китае, в 1916 18 в миссии в Швейцарии, а в 1919 20 в посольстве в Германии. В 1921 23 Т. возглавлял 1 ю секцию европейско американского бюро японского министерства… …   Дипломатический словарь

  • такого же порядка — прил., кол во синонимов: 9 • аналогичный (23) • в таком же роде (11) • в том же роде (13 …   Словарь синонимов

  • Полиция порядка в Третьем рейхе — Штандарт шефа Ordnungspolizei Полиция порядка (нем. Ordnungspolizei, OrPo, иногда Orpo) объединяла полиц …   Википедия

  • Кривая второго порядка — Кривая второго порядка  геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида в котором по крайней мере один из коэффициентов отличен от нуля. Содержание 1 История 2 …   Википедия

  • Кривая 2-го порядка — Кривая второго порядка  геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0, в котором по крайней мере один из коэффициентов отличен от нуля.… …   Википедия

  • Кривые второго порядка — Кривая второго порядка  геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0, в котором по крайней мере один из коэффициентов отличен от нуля.… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»